Rolling Bearing Fault Diagnosis Based on SVDP-Based Kurtogram and Iterative Autocorrelation of Teager Energy Operator
نویسندگان
چکیده
منابع مشابه
Incipient fault diagnosis of rolling element bearing based on wavelet packet transform and energy operator
This paper mainly deals with the issue of incipient fault diagnosis for rolling element bearing. Firstly, an envelope demodulation technique based on wavelet packet transform and energy operator is applied to extract the fault feature of vibration signal. Secondly, the relative spectral entropy of envelope spectrum and the gravity frequency are combined to construct two-dimensional features vec...
متن کاملFault severity diagnosis of rolling element bearings based on kurtogram and envelope analysis
Faults in rolling element bearing are among the main causes of breakdown in rotating machines. Vibration is an effective technique for machine condition monitoring. Vibration signals from a defective bearing with a localized fault contain a series of impulsive responses, which result from the impacts of the defective part(s) with other elements. Most researches carried out have focused on fault...
متن کاملNeural-network-based motor rolling bearing fault diagnosis
Motor systems are very important in modern society. They convert almost 60% of the electricity produced in the U.S. into other forms of energy to provide power to other equipment. In the performance of all motor systems, bearings play an important role. Many problems arising in motor operations are linked to bearing faults. In many cases, the accuracy of the instruments and devices used to moni...
متن کاملIncipient Fault Feature Extraction of Rolling Bearings Using Autocorrelation Function Impulse Harmonic to Noise Ratio Index Based SVD and Teager Energy Operator
The periodic impulse feature is the most typical fault signature of the vibration signal from fault rolling element bearings (REBs). However, it is easily contaminated by noise and interference harmonics. In order to extract the incipient impulse feature from the fault vibration signal, this paper presented an autocorrelation function periodic impulse harmonic to noise ratio (ACFHNR) index base...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2921778